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Oscillations are ubiquitous phenomena in biological systems. Conventional models of biological periodic
oscillations usually invoke interconnecting transcriptional feedback loops. Some specific proteins function as
transcription factors, which in turn negatively regulate the expression of the genes that encode these “clock
proteins.” These loops may lead to rhythmic changes in gene expression in a cell. In the case of multicellular
tissue, collective oscillation is often due to the synchronization of these cells, which manifest themselves as
autonomous oscillators. In contrast, we propose here a different scenario for the occurrence of collective
oscillation in a group of nonoscillatory cells. Neither periodic external stimulation nor pacemaker cells with
intrinsically oscillator are included in the present system. By adopting a spatially inhomogeneous active factor,
we observe and analyze a coupling-induced oscillation, inherent to the phenomenon of wave propagation due
to intracellular communication.
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I. INTRODUCTION

Oscillation is ubiquitous in nature not only in physics and
chemistry but also biology. Biological oscillations can be
observed over a wide range of time and population scales,
from a circadian rhythm of about 24 h �1� to a segmentation
clock of less than 2 h �2� and from whole-body oscillatory
fevers �3� to periodic protein production in a single cell �4�.
On the other hand, sound theoretical studies have been un-
dergoing since long before the observation became possible
in molecular level. There are many theoretical models to
explain these phenomena. Despite their diversity of biologi-
cal insights, these models share some common points.

Proteins are produced by the transcription and translation
of specific sequences of DNA. On the other hand, proteins
can bind to a transcription promoter on DNA and hence sup-
press or enhance gene expression. A transcriptional negative
feedback loop �5,6� and a delay �7,8� in the inner cellular
gene-protein network are considered to be important ele-
ments that contribute to the oscillatory expression of DNA
and protein production. From the perspectives of dynamical
systems, such oscillations are limit cycles that can be gener-
ated from Hopf bifurcation by choosing an appropriate pa-
rameter set and initial condition. Consequently, in the case of
a cell group or multicellular organism with an oscillatory
character, such as cardiac tissue and a segmentation clock in
the tail of presomitic mesoderm �PSM�, the synchronization
of coupled oscillators is often used to explain the observed
collective oscillation �9–11�.

However, periodic oscillation is only a small part of the
dynamical behavior of a cell. Oscillation may cease if the
conditions are changed, and most cells tend to settle into a
seeming stable state. For example, electrical activity in �
cells exhibits slow periodic oscillation at the macroscale of
islets of Langerhans, while much faster excitability instead

of oscillation when isolated �12,13�. In another example, the
three proteins �KaiA, KaiB, and KaiC� identified as impor-
tant for the circadian rhythms in cyanobacterium Synechoc-
occus elongatus behave as a bistable toggle switch due to a
double-negative-feedback loop. Oscillation could then arise
from the successive switch between these two stable steady
states �14,15�. Moreover, most recent studies also suggested
that the negative transcriptional feedback is not sufficient,
and in some cases not even necessary, for circadian oscilla-
tion. Instead, intracellular signaling, such as that involving
Ca2+ and cAMP, together with transcriptional feedback plays
a key role in long-term circadian pacemaking �16�. These
evidences raise the possibility that intrinsic oscillatory cells
are not indispensable in an oscillatory organism.

In this paper, we study the occurrence of collective oscil-
lation from nonoscillatory system. In contrast to the conven-
tional mechanism of synchronized oscillators, none of the
individual cells in our model is intrinsically oscillatory. A
few studies in the context of mathematics and physics have
revealed the possibility of collective oscillating patterns. The
first example was proposed by Smale �17�, who found that
two “dead” cells can become “alive” via diffusive coupling.
More recently, other studies have examined this behavior in
detail �18,19�. In-phase and antiphase self-sustained oscilla-
tions of excitable membrane via bulk coupling have been
observed �20�. The models considered in these reports have
mostly involved coupled identical excitable cells with mono-
stability. Some more complicated approaches include, for ex-
ample, using a unidirectional coupling scheme �21�, applying
a periodic stimulation �22�, coupling the system with an os-
cillatory boundary �23�, introducing heterogeneity into excit-
able media �24�, activity propagating in discrete cellular au-
tomata model �25�, and so forth. A commonly used idea is to
set isolated cells at a subthreshold quiescent state and then
push them over into the oscillatory regime to generate pace-
maker cells by extra force or coupling. That means cells are
possible to manifest themselves as oscillators. However, little
attention has been paid to the emergence of oscillation in
systems that are completely independent of oscillating ele-
ments. Unlike previous studies, geometrical structure of
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nullclines of cells in our model prevents dynamics from be-
ing oscillated. There are two “engines” in our model to drive
the self-sustained collective oscillation, neither of which is
oscillatory pacemaker. The one is bistable cell switching be-
tween two stable states; the other is monostable cell with
excitability. Two engines work cooperatively due to the wave
propagation.

On the other hand, in a bistable system, a stationary front
can bifurcate into a pair of fronts that propagate in opposite
directions, which is known as nonequilibrium Ising-Bloch
�NIB� bifurcation �26,27�. Perturbation for the occurrence of
NIB bifurcation can be induced by local spatial inhomoge-
neity �28�. A more global analysis showed that the NIB point
is only part of the story and concluded that an unstable wave
front �WF� is intrinsic to media that are spatially inhomoge-
neous �29,30�. An unstable wave front may manifest itself as
a reflected front, tango wave �31�, pacemaker �32�, and so
on. In this paper, we think about these phenomena beyond
mathematics and physics and extend their application to bio-
logical oscillators.

Moreover, although most studies have been performed on
a spatial continuum described by partial differential equa-
tions �PDEs�, continuum models neglect the effects of cellu-
lar discreteness �33�. In fact, from the viewpoint of biology,
the size of cells cannot decrease infinitely. This intrinsic
property is difficult to ignore, especially at the stage of initial
development of an organism, when the cell size is compa-
rable to that of tissue. In addition, there are mathematical
reasons to explore the system dynamics with spatial discreti-
zation. PDE and ordinary differential equations �ODEs� have
different theoretical frameworks and produce different re-
sults. Several significant features of discreteness, such as
wave propagation failure �34�, cannot occur in a continuum
model. Therefore, in this paper we will consider an array of
spatially discrete cells and discuss the impact of discreteness.

II. DESCRIPTION OF THE MODEL

A. One-dimensional cellular array

In this paper, we consider cells in one-dimensional space.
Cells are coupled by intracellular signaling molecules, which
flow through channels in a membrane due to concentration
difference or depolarization-mediated flux. The intracellular
signaling small molecule can be produced by a series of pro-
cess from some genes functioned as activator and then trig-
ger transcriptional feedback loops of adjacent cells. We as-
sume that the coupling interaction takes place in a
diffusionlike manner. If we include an inhibitor, which can
locally repress the expression of activator genes, a one-
dimensional array of N cells can be described as

u̇i = f�ui,vi,�i� + D̃�ui−1 + ui+1 − 2ui� , �1�

v̇i = g�ui,vi� , �2�

where u and v are concentration of activator and inhibitor,
respectively, i� �1. . .N� is the index of the cell in the chain,

and D̃ is the coupling strength of u. f and g are the corre-
sponding reaction functions. The boundary condition is zero

flux, i.e., u0=u1 and uN=uN+1. Finally, �i is an environmental
parameter, which will be discussed in detail later.

In this study, we only consider coupling of the activator.
For most of the models that have been used to study pattern
formation, diffusion is assumed to occur for every element.
Specially, much greater diffusion of the inhibitor is necessary
to induce Turing instability �35�. However, a cells membrane
is very selective for the passage of substances. Complicated
intracellular reactions usually take place locally but are trig-
gered by only one or a few specific signaling molecules. For
example, while the segmentation clock involves the cyclic
expression of many genes, the crucial pathway for coupling
only involves the transmembrane receptor Notch1 �36�.
Thus, in the context of biology, we only consider coupling
with the activator, and the inhibitor in our model is merely a
local state variable.

B. Active factor

The development of a multicellular organism begins with
a single cell, which divides and gives rise to cells with dif-
ferent typologies. Different cells are organized according to
certain secreted chemicals called morphogens. Despite im-
provements in experimental and theoretical approaches, the
mechanisms of morphogenesis are still unclear. Usually,
morphogens are considered to be produced at specific sites
and diffuse through the organism �37�. Quite recently, an
evidence of a “shuttling-based” mechanism has been pre-
sented �38�. The key in such models is their ability to define
a robust and scaling profile, usually a concentration gradient
of morphogens. More broadly, we can suppose that some
environmental parameters act as morphogens. The environ-
ment in which an organism develops supplies nutrition for
growth, and the intracellular volume in direct contact with
the border gets more and that deep inside cells gets less.

In this paper, we do not consider any specific chemical
substance and instead merely suppose that there is a certain
factor, which we refer to as the active factor, to obtain infor-
mation regarding the relation between position and cell dy-
namics. The above-mentioned active factors can affect the
fate of cells in a concentration-dependent manner �39,40�.

Without losing generality, we assume that the active fac-
tor � is constant at the boundaries of an organism, where the
source site of morphogens is usually located. It diffuses into
the organism field with a diffusion constant Da and is de-
graded at rate �. Thus, we have

��

�t
= Da

�2�

�x2 − �� . �3�

Since our model is based on coupled ODEs independent of
spatial variation, the profile of the active factor satisfies a
scaling property. By normalizing the field size to one, we can
get a steady profile ��� /�t=0� of � as

��x� =
�0

e−� − e� ��e−� − 1�e�x − �e� − 1�e−�x� , �4�

where �0=��0�=��1� is the value at two boundaries, and �
=1 /�=�� /Da is the inverse of the decay length. A typical
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profile of ��x� is shown in Fig. 1. Circles indicate the value
of � for discrete cells �N=20 in the figure� placed uniformly
in the scaling field.

C. Bistability

We assume that cells normally prefer to live in a stable
state, and cells with a high concentration of active factor are
capable of switching between two states. This kind of bista-
bility is very important and has been observed in various
biological systems �41�. For example, the expression of the
Dictyostelium cAMP phosphodiesterase gene behaves as a
bistable switch employing intracellular cAMP as a regulator
of cell fate �42�, the Cdc2 activation system in Xenopus egg
extracts is bistable and characterized by biochemical hyster-
esis �43�, the inducible lac operon in E coli shows bistability
�44�, and so on.

Usually, bistability arises from positive or double-
negative genetic regulation loops �41,45,46�. It was recently
suggested that stochastic fluctuation plays an important role
in the nature of the transition between bistable states �47,48�.
Moreover, physical regulation of protein production, which
has been much less considered by biochemists, also plays an
important role in the origin of the bistability. It has been
observed that discrete transition between folding and unfold-
ing states, namely, a first-order phase transition, can take
place in giant DNA �49�. Similar discrete switch can also
occur for RNA �50�, protein �51�, and other molecules �52�.
This discrete transition leads to the ON/OFF switching of the
production of a specific protein.

D. Model equations

We describe the dynamical reaction function of each cell
by using the two-component Fitzhugh-Nagumo equations

u̇ = f�u,v,�� = �u�u − ���1 − u� − v , �5�

v̇ = g�u,v� = ���u − v� , �6�

where u is a variable related to the expression level of spe-
cific activator genes, v is the inhibitor to repress u, �—which
is much smaller than 1—is the slower growth factor of in-
hibitor v, and � is the active factor discussed previously.
Note that the kinetics of inhibitor here is a rather natural unit
process in many of biochemical reactions. Throughout this
paper, the following parameters are fixed:

� = 0.3, � = 0.5, � = 0.02. �7�

The Fitzhugh-Nagumo model has been well studied for de-
scription of excitable behavior in biology. Rich nonlinear

dynamics can be observed by tuning parameters. Specifi-
cally, with the above parameters, the model is monostable at
small value of � and will happen a saddle-node bifurcation at
�=4.08 and a Hopf bifurcation at �=4.27, which leads to
bistability. Thus, in the case of the spatial profile of �i as
shown in Fig. 1, only the eight central cells 7th–14th are
monostable, while the others are bistable ��6=�15=4.37�.

Figures 2�a� and 2�b� show the nullclines with bistability
and monostability for when � is large and small, respec-
tively. Again, none of the cells show oscillation in the ab-
sence of coupling. More important, from the geometry prop-
erty of nullclines in the figure, no oscillatory condition could
be found by moving cubic nullcline �u̇=0� up and down; that
is, no pacemaker cells can be generated from the activator
coupling.

If we substitute Eqs. �5� and �6� into Eqs. �1� and �2�, we
get the system equations used in this paper,

u̇i = �iui�ui − ���1 − ui� − vi + D̃�ui−1 + ui+1 − 2ui� , �8�

v̇i = ���ui − vi� . �9�

When we change the coupling strength D̃, we observe the
occurrence, variation, and disappearance of the self-sustained
collective oscillation in the cell array.

III. SELF-SUSTAINED COLLECTIVE OSCILLATION

A. Normal collective oscillation

Figure 3�a� shows a typical oscillation when the coupling

strength D̃=0.7. Figure 4�a� shows an enlarged view of a
single period of oscillation. As the initial condition, we set
the first cell as being excited, since stimulation is usually
input from the border. Initially, �0� t�80�, a traveling wave
appears due to the excitation at the border. The traveling
front then sweeps over the cell array and makes all of the
cells excited �see Fig. 4�b��. Although the central cells are
also turned ON due to the interaction with other cells, they
cannot stay in the excitable state for a long time. Instead,
they soon return to their stable equilibrium �see Fig. 4�c��
and hence generate two counterpropagating wave backs
�WBs�, as shown in Fig. 4�d�. These two wave backs propa-
gate outward until the 3rd and 18th cells and stop suddenly
due to the spatial discreteness �see Fig. 4�e��. The “wall”
cells do not jump from the ON state to the OFF state and
only exhibit slight oscillation closed to their equilibrium. As
an example, the difference between the 3rd and 4th cells is

0 0.2 0.4 0.6 0.8 1
0

10

15

5

x →

Γ
i

FIG. 1. Profile of �i obtained from Eq. �4�, when
�0=15,�=5.

u

v
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v̇ = 0

u

v

0
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FIG. 2. Nullcline diagrams in �a� bistability and �b� monostabil-
ity, respectively.
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shown in Figs. 3�b� and 3�c�. At this critical interface, the
inhibitor v slowly decreases so that the 4th and 17th cells
restore excitability after a while. The central cells can then
be excited again by the pair of reflecting wave fronts, as
shown in Fig. 4�f�. Pushed by the wave, the central cells will
be excited again. This process repeats and causes the collec-
tive oscillation inside multicell tissue without oscillatory
cells.

B. Stationary state before birth of oscillation

The above collective oscillation can be observed when the
coupling strength is larger than a threshold, below which
wave backs �see Fig. 4�d�� fail to reflect, and the state in Fig.
4�e� is maintained. Figure 5 shows a spatiotemporal diagram,
where the central cells stay silent while excited bands appear
close to the two borders.

Note that this phenomenon could not take place in a con-
tinuum counterpart. The existence of a coupling strength
threshold under which wave propagation failure occurs is
unique to a spatially discrete system. In addition, there is
another threshold, which is even smaller, for which the wave
front stops propagating. In this case, the excited signal at the
border fails to propagate forward, but we would like to post-
pone this interesting phenomenon on another paper, since it
is less related to the present work.

C. In-phase and antiphase period-doubling oscillation closed
to the boundary

With an increase in the coupling strength D̃, the charac-
teristics of oscillation can be changed. Figure 6 shows that
the position of oscillation periodically shifts. The 3rd and
18th cells oscillate with a nearly doubled period, in antiphase
�Figs. 6�b� and 6�c��. Globally, tissue oscillates in two groups
with the same cell populations but different positions: no.
3–no. 17 �15 cells� and no. 4–no. 18 �15 cells�, respectively.

Interestingly, by slightly increasing the coupling strength

D̃, say to D̃=0.9, we found a different type of period dou-
bling, as shown in Fig. 7. For comparison with the case of

D̃=0.8, although the critical interface between ON and OFF
shifts periodically as in Fig. 6, there is no phase difference
between the 3rd and 18th cells. As is clearly shown in their
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FIG. 3. Collective oscillation observed in a chain of cells when

D̃=0.7 in Eqs. �8� and �9�. �a� Spatiotemporal plot of the collective
oscillation of ui. The black and white indicate ui=1 and ui=0, re-
spectively. ��b� and �c�� Wave forms of u �solid� and v �dashed� in
the 3rd and 4th cells.
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FIG. 4. �a� Spatiotemporal diagram of ui over a single period.
��b�–�f�� Snapshots of u and v at several time points in one period,
where the horizontal axis is cell number from 1 to 20. This illus-
trates the change in wave propagation at different stages. Solid
curves and dashed curves indicate u and v, respectively. An anima-
tion, through which the behavior can be understood more intu-
itively, is available at �54�.
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wave form �Figs. 7�b� and 7�c��, these two boundary cells
oscillate in phase, instead of antiphase �Figs. 6�b� and 6�c��.
Therefore, in the present condition, a periodic change does
not take place in the position of oscillation. Instead, the
population of oscillating cells changes. More precisely, tissue
oscillates in two groups: no. 3–no. 18 �16 cells� and no.
4–no. 17 �14 cells�, respectively.

Moreover, by setting the initial condition of the cells iden-
tically, i.e., all in the ON state at t=0, we found and checked
that the same symmetric collective oscillation can also occur

in the case of D̃=0.8. Therefore, we conclude that these two
types of oscillation are caused by the same bifurcation. Be-

cause the wave front propagates faster with larger D̃, a larger
coupling strength can reduce the time lag between the two
boundary cells being stimulated. If the time lag is smaller,
the two boundaries converge to in-phase oscillation. On the
other hand, if the time lag is large, they will exhibit antiphase
oscillation.

D. Oscillation death

With an increase in coupling strength D̃, we observed that
the change in the periodic position or population stopped and

normal oscillation returned. In comparison to the case of D̃
=0.7, the total population of oscillating cells increased from
14 �no. 4 to no. 17� to 16 �no. 3 to no. 18�.

The oscillation suddenly dies when D̃ is as large as 2.6.
Figure 8�b� clearly shows that the central cells start to oscil-
late after all of the cells are excited, but this oscillation is not
sustained. In this strong-coupling condition, the boundary
cells cannot recover their excitability, so that the wave front
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FIG. 5. Spatiotemporal diagram of ui in a stationary state. Wave
propagation stops and no oscillation occurs in the case of weak

coupling D̃=0.47.
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FIG. 6. Antiphase mode in period doubling produces collective

oscillation with a periodic position shift when D̃=0.8. �a� Spa-
tiotemporal diagram of ui. The grayscale black and white indicate
ui=1 and ui=0, respectively. �b� and �c� are wave form diagrams of
the 3rd and 18th cells. Activator u and inhibitor v are shown in solid
and dashed curves, respectively.
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FIG. 7. In-phase mode in period doubling produces collective

oscillation with a change in the periodic population when D̃=0.9.
�a� Spatiotemporal diagram of ui. The grayscale black and white
indicate ui=1 and ui=0, respectively. �b� and �c� are wave form
diagrams of the 3rd and 18th cells. Activator u and inhibitor v are
shown in solid and dashed curves, respectively.
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propagating from the center is unable to stop and reflect to
generate successive oscillation.

Before the oscillation stops, there is a narrow parameter

region of 2.53	 D̃	2.56, where only one side of the “wall”
alternatively collapses, and a complicated period-4 collective
oscillation is observed �Fig. 8�a��.

E. Overall perspective and bifurcation

There are many factors that may influence the oscillation
behavior. For example, if the spatial profile of active factor �
becomes more “steep” rather than a gentle slope, the wave
back will tend to be locked and fail to reflect from boundary.
Moreover, if we reduce the excitability of cells by increasing
�, it will be more difficult for the wave front to propagate
cross the center, and only the half part with stimulation can
oscillate. Since the global oscillation is induced by mutual
coupling, we are going to study the oscillation behavior with

respect to the coupling strength. Here, we sweep D̃ from 0.45
to 2.7 and summarize the variation in the oscillation period
and position of the left border of the oscillation region.

If the coupling strength is smaller than 0.48, there is no
oscillation and 4 cells from the tissue border are excited
while cells 5–16 are silent. Oscillation takes place when the

wave back passes the 4th cell at D̃=0.48. The border then
shifts between 3 and 4, while in-phase and antiphase period

doubled oscillation occur, roughly between 0.78� D̃�0.97.
Finally, the oscillation reaches a maximum region: from cells

3 to 18, until D̃ is too large for oscillation to occur. Figure
9�a� shows the expansion of oscillatory region.

Variations in the period of oscillation are shown in Fig.
9�b�. Once the central cells start to collectively oscillate, the
period rapidly decreases when the coupling strength in-
creases. The rate of the period decrease gradually slows. The

period changes little in the region where D̃ is large. This

phenomenon occurs because the stationary interval �Fig.
4�e�� greatly contributes to the period of oscillation. The de-
crease in the stationary interval significantly shortens the pe-

riod of oscillation when D̃ is small. However, when D̃ is
large enough, the wave backs reflect immediately without
stopping, and the period is determined mainly by the velocity
of propagation. Therefore, the presented oscillation is robust
at strong-coupling condition and tunable at weak-coupling
case.

There is a parameter region �the curve of period is drawn
in dashed curve Fig. 9�b�� in which system undergoes period-
doubling bifurcation and the period-1 solution loses its sta-
bility. Meanwhile, period-2 solutions appear around this re-
gion. We show more details in Fig. 9�c�. In the figure, we
draw two intervals in a period two solution, by measuring the
time when u4 positively cross the section u4=0.5. Circles
��� and crosses �
� indicate in-phase and antiphase solu-
tions, respectively. The in-phase period-2 solution is the re-
sult of the period-doubling bifurcation, while the antiphase
period-2 solution occurs at saddle-node bifurcation. The an-
tiphase period-2 solution has a wider parameter region than
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FIG. 8. Spatiotemporal diagram of ui. Black and white indicate

ui=1 and ui=0, respectively. �a� D̃=2.53, oscillation starts to col-

lapse; �b� D̃=2.6, oscillation ceases after one cycle.
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in-phase one and coexistence with fundamental period-1 so-

lution can be observed in both side of D̃. There are quite
complicated bifurcation phenomena especially around the
occurrence of period-doubling bifurcation. We have even

found period-3 solution �in-phase one around D̃=0.802 and

antiphase one around D̃=0.975, respectively�. Although they
are very interesting in the viewpoint of nonlinear dynamical
system, we leave them to our future work because current
paper is going to discuss the possibility of global oscillation
and its potential applications.

IV. DISCUSSION

A. Discreteness versus continuum

The above phenomena are observed in a spatially discrete
system described by ordinary differential equations. As
briefly introduced in Sec I, this discreteness is important in
both a mathematical and biological sense. Let us discuss this
significance in more detail.

The diffusion term D��2u /�x2� in a one-dimensional spa-
tially continuous reaction-diffusion model can be formulated
as D�ui−1+ui+1−2ui� /�x2 in its difference version. This type
of conversion is a common approach to solving PDE numeri-
cally. The diffusion rate D usually does not change much for
a specific substance under constant conditions. Thus, if we
assume that the coupling is mainly due to the diffusionlike

effects of substances, the coupling strength D̃�D /�x2

changes in square order with respect to variation of �x,
which biologically corresponds to the distance between cells
or the cell size. Since the profile of the active factor has a
scaling property, it is reasonable to suppose that this gradient
works for a field of any size. Thus, we can study how a
change in the number of cells N and distant of cells �x
affects global dynamics.

Figure 10�a� shows spatiotemporal diagrams with a ten-
fold increase in the number of cells N=200. Other param-
eters are the same as those in Fig. 3. Obviously, more time is
required for a wave to sweep over the organism. The period

of oscillation and the phase difference between the two sides
increase greatly. On the other hand, if the distance �x be-
tween cells becomes smaller and smaller when cell popula-
tion increases, the system manifests itself more like a con-
tinuum than a discrete system. In this case, the coupling
strength will increase dramatically as a square with respect to

the decrease in �x, i.e., a 100-fold increase in D̃ in the

present case. When D̃ is as large as 70, we have the spa-
tiotemporal diagram given in Fig. 10�b�. When we compare
this with Fig. 3, there is little change in the period of collec-
tive oscillation. This suggests that the clock tends to run
more punctually. In a mathematical sense, when the popula-
tion of cells is large enough in a fixed field, the behavior of
the organism will follow the solution of a specific partial
differential equation, which is independent of the number of
cells.

Figure 10�a� simply corresponds to the case that cells
grow in an open space and extend the field by keeping the
size and distant of cells constantly. During the initial period
of development, however, cell divisions within the egg pro-
ceed quickly, without much increase in the total cell mass
and size. Thus, cells at this stage rapidly decrease in diam-
eter. This may interpret biologically the situation of Fig.
10�b�.

There are many biological situations, however, that the
intercellular coupling does not follow the diffusionlike ways
such as communication involving the delta-notch signaling
pathway �53�. In those cases, �x has few direct influences on

D̃, which may represent “bottlenecks” irrespective to the dif-
fusion. Thus, the modeling based a continuum is inappropri-
ate for some conditions.

B. Understanding the mechanism

Self-sustained collective oscillation is caused by the ex-
citability of cells and their mutual interaction. The system
involves complicated bifurcations. We present here some
qualitative ideas regarding how this oscillation takes place.

From dynamical Eqs. �5� and �6� and their nullcline
shown in Fig. 2, we know that a single cell can exhibit either
bistability or monostability. However, if we introduce cou-
pling, the geometry of nullclines of one cell will dynamically
change according to its own state and those of its neighbors.
Because it was assumed that the communication between
cells is only mediated via the activator u, the strict nullcline
v̇i=0 is independent of coupling,

vi = G�ui� = �ui. �10�

From Eqs. �1� and �5�, we obtain the function for the
nullcline u̇i=0 as

vi = F�ui,�i� = �iui�ui − ���1 − ui� + �Ui, �11�

where �Ui= D̃�ui+1+ui−1−2ui� is the offset of the cubic func-
tion due to coupling. Thus, the nullcline v=F�·� dynamically
moves up and down in the phase plane, corresponding to the
state of ui−1 ,ui ,ui+1.

In Fig. 11, we show the phase portrait of cells around the
oscillation border �cells no.3–5�, as well as their dynamical
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FIG. 10. Spatiotemporal diagram of ui. Black and white indicate

ui=1 and ui=0, respectively �N=200�. �a� D̃=D /�x2=0.7. �b� D̃
=D /�x2=70.
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nullcline at some turning points. Snapshots are taken under
the same conditions of normal oscillation as shown in Fig. 3.

The first row ��a�–�c�� in Fig. 11 are all in the excited
state, i.e., for all three cells, ui is close to 1. Therefore, under
this condition, the vertical offset �U of the nullcline is nearly
zero, and all three cells exhibit bistability. The second row is
taken at t=226, when the wave back comes �see Fig. 4�d��,
and the 5th cell moves toward its lower equilibrium �Fig.

11�f��. Since �U4= D̃�u3+u5−2u4�, a sudden drop in u5 leads
to a rapid decrease in the cubic nullcline. As shown in Fig.
11�e�, the cubic nullcline moves down so that the higher
equilibrium disappears. Thus, the 4th cell becomes
monostable and the state quickly converges to the left branch
of the cubic nullcline. The decrease in u4 pushes �U4 back to
a positive value and makes the nullcline of the 3rd cell move

down, as shown in Figs. 11�g� and 11�h�. However, since the
3rd cell has a larger �, which controls the amplitude of the
cubic nullcline, even if u4 decreases to its lowest value �Fig.
11�h��, i.e., �U3 reduces to its minimum, the cubic and
straight nullclines still intersect, and the higher equilibrium
remains. This explains why the wave back passes the 4th cell
but stops at the 3rd cell �Fig. 4�a��. After propagation stops,
there is a relatively long refractory period from time 230 to
300. In this interval, there is a slow decrease in the inhibitor
v4. Since u3�0.8 and u5�0, although slight increase in u4
pulls the cubic nullcline down, �U4 is still so large that the
cubic nullcline is above the straight nullcline �Fig. 11�k��.
Under this condition, the cell is monostable, with the equi-
librium at the right branch of the cubic function. Thus, after
a while, the state of u will switch to a higher value �Fig.
11�n�� and leads to a reflecting wave front �Fig. 4�f��. Finally,
the states return to the situation of Fig. 11�b� after another
refractory period.

Note that a smaller coupling strength D̃ leads to a smaller
offset �U. If we move down the cubic nullcline slightly to
cross the straight nullcline in Fig. 11�k�, the 4th cell becomes
bistable. This will disable the switch from left to right and
stop the oscillation �Fig. 5�.

From the above description and in Fig. 11, we conclude
that the boundary cell, here no.4, which is bistable without
coupling, turns to switch between two types of monostable
dynamics. As introduced in Sec. I, it is different from the
studies changing nullclines via coupling to an oscillatory ge-
ometry. This switching becomes the power that underlies the
self-sustained oscillation observed in the present model. The
variation in the offset of the dynamical nullcline of the
boundary cell gives rise to rich oscillation phenomena.

C. Conditions for oscillation

We will now explore the conditions for oscillation in an
approximate manner by studying the dynamics on the oscil-
lation border, where WBs stop and WFs generate. Based on
an investigation of the dynamical nullcline and state variable,
we concluded that a wave back will not pass a critical cell c
if the nullclines still intersect at the right branch when cell
c+1 has dropped to its lower equilibrium �Figs. 11�g� and
11�h��. In contrast, if the intersections disappear, the state of
uc will switch to a lower equilibrium. Then cell c is possible
to oscillate, if it fires a wave front, in the case that the two
nullclines do not cross at the left branch when the state of the
inhibitor recovers to its lower limit �Figs. 11�e� and 11�f��.

Thus, we can roughly solve the condition by finding two
possible tangencies for the two nullclines �10� and �11�. This
can be achieved using the following equations:

dF�u,��
du

=
dG�u�

du
. �12�

Equation �12� is for two nullclines with the same slope. By
substituting F and G into Eq. �12�, we have

��− 3u2 + 2�1 + ��u − �� = � , �13�

from which we obtain two solutions

Cell No.3 Cell No.4 Cell No.5

t=
21

8

0 0.5 1

0

0.5

0 0.5 1

0

0.5

0 0.5 1

0

0.5

(a) (b) (c)

t=
22

6

0 0.5 1

0

0.5

0 0.5 1

0

0.5

0 0.5 1

0

0.5

(d) (e) (f)

t=
23

3

0 0.5 1

0

0.5

0 0.5 1

0

0.5

0 0.5 1

0

0.5

(g) (h) (i)

t=
28

8

0 0.5 1

0

0.5

0 0.5 1

0

0.5

0 0.5 1

0

0.5

(j) (k) (l)

t=
30

6

0 0.5 1

0

0.5

0 0.5 1

0

0.5

0 0.5 1

0

0.5

(m) (n) (o)

FIG. 11. Phase portrait diagrams with snapshots of the dynami-
cal nullcline. Rows indicate the time evolution from the top down
and columns indicate the number of cells �3 at left, 4 at middle, and
5 at right�. Dashed curves are the limit cycle solution. Cubic func-
tion curves are the nullcline of u̇i=0. Straight lines are the nullcline
of v̇i=0. Circles are the position of �ui ,vi� at specific times. An
animation of the dynamical nullclines can be found at �54�.
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uT1,2
=

13 � �79 − 150/�
30

. �14�

For cell c to propagate a wave back, there should be only
a lower equilibrium when uc close to the higher tangency
point. The corresponding condition is F�uT1

,�c��G�uT1
�.

Substitution leads to

�cuT1
�uT1

− ���1 − uT1
� + D̃�uc−1 + uc+1 − 2uT1

� � �uT1
.

�15�

On the other hand, for cell c to generate a wave front, there
should be no lower equilibrium when uc is close to the lower
tangency point. This simply means that F�uT2

,�c�G�uT2
�,

which can be rewritten as

�cuT2
�uT2

− ���1 − uT2
� + D̃�uc−1 + uc+1 − 2uT2

�  �uT2
.

�16�

Two critical conditions are shown in Fig. 12.
Approximation. �1� uc−1 is the “distal” side of the critical

cell c. It remains in its higher equilibrium since the wave
back cannot pass it. Thus, we can approximate it by finding
the biggest intersection of the two nullclines. In the wave
back case, since uT1

is close to the higher equilibrium, �Uc−1

is nearly zero. Thus, we determine uc−1 to be 0.9. In the
wave-front case, however, uT2

is small. If we consider the
minus �Uc−1, we determine uc−1 to be 0.8.

�2� uc+1 is the “proximal” side of the critical cell c. It
switches off before cell c when a wave back comes and waits
to be excited again by cell c, so at the critical time, uc+1
approaches 0.

�3� Figure 13 shows uT1,2
according to Eq. �14�. Obvi-

ously, uT1
and uT2

change little and can be regarded as the
constants 0.7 and 0.17, respectively. �4� Note that the above
approximations are not valid when the coupling strength is
too large, or excitability is too weak.

According to the above approximations, by substituting

uT1
= 0.7,uc−1 = 0.9,uc+1 = 0

into Eq. �15�, and

uT2
= 0.17,uc−1 = 0.8,uc+1 = 0

into Eq. �16�, we obtain two rough conditions

D̃  0.168�c − 0.7 WB passes, �17�

D̃  0.039 8�c + 0.184 8 WF generates. �18�

Clearly, the critical coupling strength increases linearly with
respect to the active factor �. We draw two lines in Fig. 14,
where the WB and WF lines are obtained from Eqs. �17� and
�18�, respectively.

In Fig. 14, labels C3, C4, and C5 on the top horizontal
axis indicate the value of � defined by Eq. �4� for cells 3, 4,
and 5, respectively. Lines WF and WB cross each other be-
tween C4 and C5. This kind of topology makes the 4th and
5th cells behave completely different.

For cell 5, WF is above WB. If the coupling strength is
between WF and WB, a wave back coming from the center
can switch the 4th cell OFF, but the cell cannot be switched
ON to fire a wave front. This is exactly the situation shown
in Fig. 5, in which no oscillation takes place. On the other
hand, for cell 4, WF is below WB. Clearly, if the coupling
strength allows the wave back to suppress the 4th cell, the
cell will be excited again and lead to a wave front.

The conditions for these two situations depend on many
other factors such as the initial conditions, propagation ve-

(a) (b)

FIG. 12. Schematic diagram of two critical tangency situations,
corresponding to the conditions for which �a� a wave back passes
and �b� a wave front is generated. Black circles are the position of
states when two nullclines tangent to each other.
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FIG. 13. Variation of two tangent points uT1,2
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FIG. 14. The diagram in the parameter plan ��c , D̃� representing
the conditions of collective oscillation. A wave back passes the cell
and a wave front reflects, when the parameters are above the WB
and WF line, respectively.
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locity, cell excitability, and so on. The situation is much more
complicated than the approximated case we have discussed
here. Qualitatively, we can conclude that the intersection of
these two condition lines is the origin of self-sustained col-
lective oscillation.

V. CONCLUDING REMARKS

In this paper, we have proposed a scenario for self-
organized and self-sustained oscillation in multicellular bio-
logical tissue. In contrast to the usual framework based on an
oscillatory genetic network, the present system does not in-
clude any self-oscillating cells. However, by mutual cou-
pling, we can observe collective oscillation inside a group of
cells, i.e., tissue. Moreover, oscillation can manifests itself in
several ways, corresponding to different coupling strengths.
Antiphase and in-phase oscillations at the two boundaries
lead to the changes in the position of oscillation and the
oscillating cell population, respectively. The birth and death

of oscillation resulting from variation in the coupling
strength were also discussed. We also provide a general idea
of how the size of the cell and population affects the oscil-
latory behavior. Finally, a detailed investigation of the dy-
namical movement of the nullcline provided insight into the
mechanism of complicated oscillatory phenomena. Although
there have been several studies on self-oscillatory phenom-
ena in spatially discrete systems in the context of mathemat-
ics and physics, this paper extends these basic ideas to spa-
tiotemporal self-organization in a biological system. It is of
interest to extend our hypothesis to spatial three-dimensional
systems, i.e., a more realistic model of living organism.

Our observations were based on a numerical simulation.
Future analytical studies inspired by these interesting phe-
nomena are needed. At last, but not less important, we are
going to cooperate with biologists, in order to design corre-
sponding biological experiments and to explore more proofs
supporting our hypothesis.
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